Symmetric Informationally Complete Measurements of Arbitrary Rank
نویسنده
چکیده
There has been much interest in so-called SIC-POVMs: rank 1 symmetric in-formationally complete positive operator valued measures. In this paper we discuss the larger class of POVMs which are symmetric and informationally complete but not necessarily rank 1. This class of POVMs is of some independent interest. In particular it includes a POVM which is closely related to the discrete Wigner function. However, it is interesting mainly because of the light it casts on the problem of constructing rank 1 symmetric informationally complete POVMs. In this connection we derive an extremal condition alternative to the one derived by Renes et al.
منابع مشابه
Symmetric Informationally Complete Quantum Measurements
We consider the existence in arbitrary finite dimensions d of a POVM comprised of d rank-one operators all of whose operator inner products are equal. Such a set is called a “symmetric, informationally complete” POVM (SIC-POVM) and is equivalent to a set of d equiangular lines in C . SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum me...
متن کاملTight informationally complete quantum measurements
We introduce a class of informationally complete positive-operator-valued measures which are, in analogy with a tight frame, “as close as possible” to orthonormal bases for the space of quantum states. These measures are distinguished by an exceptionally simple state-reconstruction formula which allows “painless” quantum state tomography. Complete sets of mutually unbiased bases and symmetric i...
متن کاملConstruction of all general symmetric informationally complete measurements
We construct the set of all general (i.e. not necessarily rank 1) symmetric informationally complete (SIC) positive operator valued measures (POVMs), and thereby show that SIC-POVMs that are not necessarily rank 1 exist in any finite dimension d. In particular, we show that any orthonormal basis of a real vector space of dimension d 2 − 1 corresponds to some general SIC POVM and vice versa. Our...
متن کاملFisher-Symmetric Informationally Complete Measurements for Pure States.
We introduce a new kind of quantum measurement that is defined to be symmetric in the sense of uniform Fisher information across a set of parameters that uniquely represent pure quantum states in the neighborhood of a fiducial pure state. The measurement is locally informationally complete-i.e., it uniquely determines these parameters, as opposed to distinguishing two arbitrary quantum states-a...
متن کاملTopological implications in quantum tomography
How many measurement settings or outcomes are necessary in order to identify a quantum system which is constrained by prior information? We show that if the latter restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes (or binary settings) by a factor of two over the number of real parameters needed to characterize the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007